12,148 research outputs found

    Pre--Main-Sequence stellar populations across Shapley Constellation III. I. Photometric Analysis and Identification

    Full text link
    We present our investigation of pre--main-sequence (PMS) stellar populations in the Large Magellanic Cloud (LMC) from imaging with Hubble Space Telescope WFPC2 camera. Our targets of interest are four star-forming regions located at the periphery of the super-giant shell LMC 4 (Shapley Constellation III). The PMS stellar content of the regions is revealed through the differential Hess diagrams and the observed color-magnitude diagrams (CMDs). Further statistical analysis of stellar distributions along cross-sections of the faint part of the CMDs allowed the quantitative assessment of the PMS stars census, and the isolation of faint PMS stars as the true low-mass stellar members of the regions. These distributions are found to be well represented by a double Gaussian function, the first component of which represents the main-sequence field stars and the second the native PMS stars of each region. Based on this result, a cluster membership probability was assigned to each PMS star according to its CMD position. The higher extinction in the region LH 88 did not allow the unambiguous identification of its native stellar population. The CMD distributions of the PMS stars with the highest membership probability in the regions LH 60, LH 63 and LH 72 exhibit an extraordinary similarity among the regions, suggesting that these stars share common characteristics, as well as common recent star formation history. Considering that the regions are located at different areas of the edge of LMC 4, this finding suggests that star formation along the super-giant shell may have occurred almost simultaneously.Comment: Accepted for publication in the Astrophysical Journal. 19 pages, 19 figures (three omitted due to size limitations, without affecting the comprehension of the manuscript

    Probing of local ferroelectricity in BiFeO3 thin films and (BiFeO3)m(SrTiO3)m superlattices

    Full text link
    Ferroelectric BiFeO3 thin films and artificial superlattices of (BiFeO3)m(SrTiO3)m (m~ 1 to 10 unit cells) were fabricated on (001)-oriented SrTiO3 substrates by pulsed laser ablation. The variation of leakage current and macroscopic polarization with periodicity was studied. Piezo force microscopy studies revealed the presence of large ferroelectric domains in the case of BiFeO3 thin films while a size reduction in ferroelectric domains was observed in the case of superlattice structures. The results show that the modification of ferroelectric domains through superlattice, could provide an additional control on engineering the domain wall mediated functional properties.Comment: 14 pages, To be published in J. Mag. Mag Mater. proceedings of EMRS 200

    Translational control analysis by translationally active RNA capture/microarray analysis (TrIP–Chip)

    Get PDF
    We have developed a new approach to systematically study post-transcriptional regulation in a small number of cells. Actively translating mRNAs are associated with polysomes and the newly synthesized peptide chains are closely associated with molecular chaperones such as hsp70s, which assist in the proper folding of nascent polypeptides into higher ordered structures. These chaperones provide an anchor with which to separate actively translating mRNAs associated with polysomes from free mRNAs. Affinity capture beads were developed to capture hsp70 chaperones associated with the polysome complexes. The isolated actively translating mRNAs were used for high-throughput expression profiling analysis. Feasibility was demonstrated using an in vitro translation system with known translationally regulated mRNA transcript thymidylate synthase (TS). We further developed the approach using HCT-116 colon cancer cells with both TS and p53 as positive controls. The steady-state levels of TS and p53 mRNAs were unaltered after 5-fluorouracil treatment as assessed by real-time qRT-PCR analysis. In contrast, the protein expression and polysome-associated mRNA levels of both genes were increased. These differences in translational rate were revealed with our new approach from 500 cells. This technology has the potential to make investigation of translational control feasible with limited quantities of clinical specimens
    corecore